If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2-10x-1=0
a = 40; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·40·(-1)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{65}}{2*40}=\frac{10-2\sqrt{65}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{65}}{2*40}=\frac{10+2\sqrt{65}}{80} $
| 2x+22=5x+7 | | 5(x+1)=6(x-1) | | 3(8a-5)=15 | | 4x-x+7=22-2x | | 12-0,2x=2 | | 2x+8(-12-x)=54-18x | | 10-2b-3b=2 | | (n/3)-7=5 | | (n/3)-5=7 | | a÷12-2=-3 | | 7x(x+3)=21 | | -53x=20 | | 3y-18y+15y=0 | | 0.365x=0.456 | | 4x^2-68x+240=0 | | 7x2=0 | | 5n+50=100 | | 25n-10=80 | | y+y*0.03=1650 | | x*x+3x-16=0 | | xˆ2=16 | | x*x=0,25 | | x+8=0,5 | | n2-n=144 | | x×x=225 | | (3/8)-(9)m=6 | | (3/2)-(1/2)(x)=4 | | (3/2)-(1/2)x=4 | | (3/2)-(1/2)t=4 | | 3k−94k−6 =3 | | 9+3x+x=37 | | 8+4x+1=2x+2-5+20x |